

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Decision Mathematics 1 (WDM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

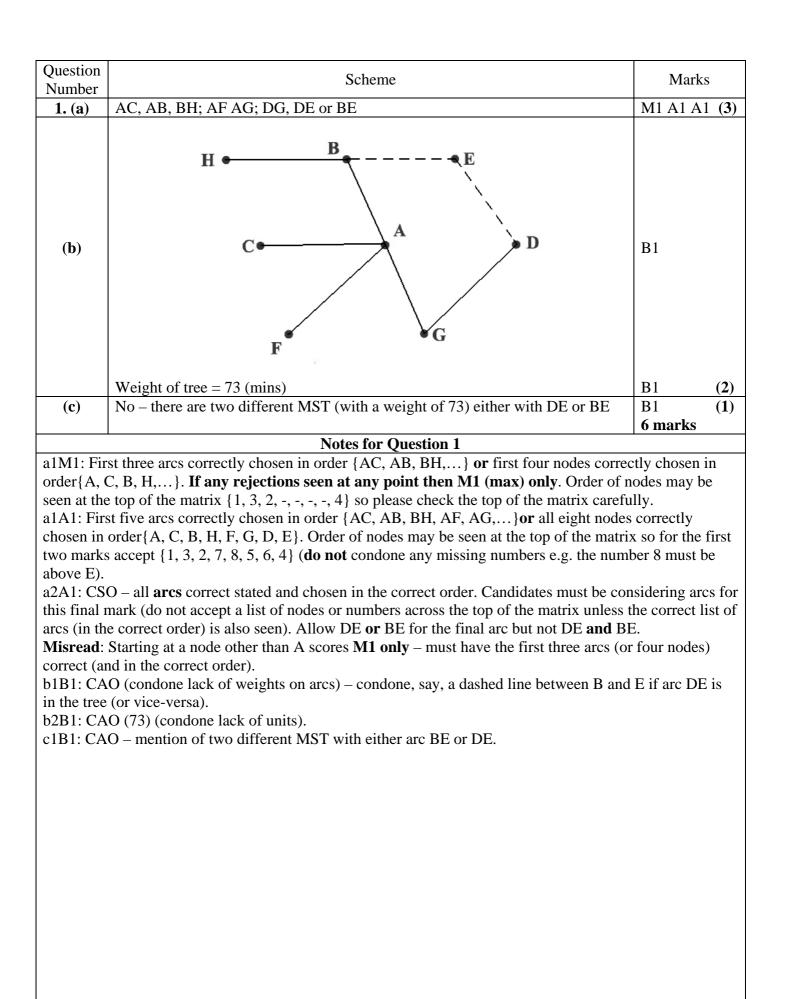
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015 Publications Code IA040490 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

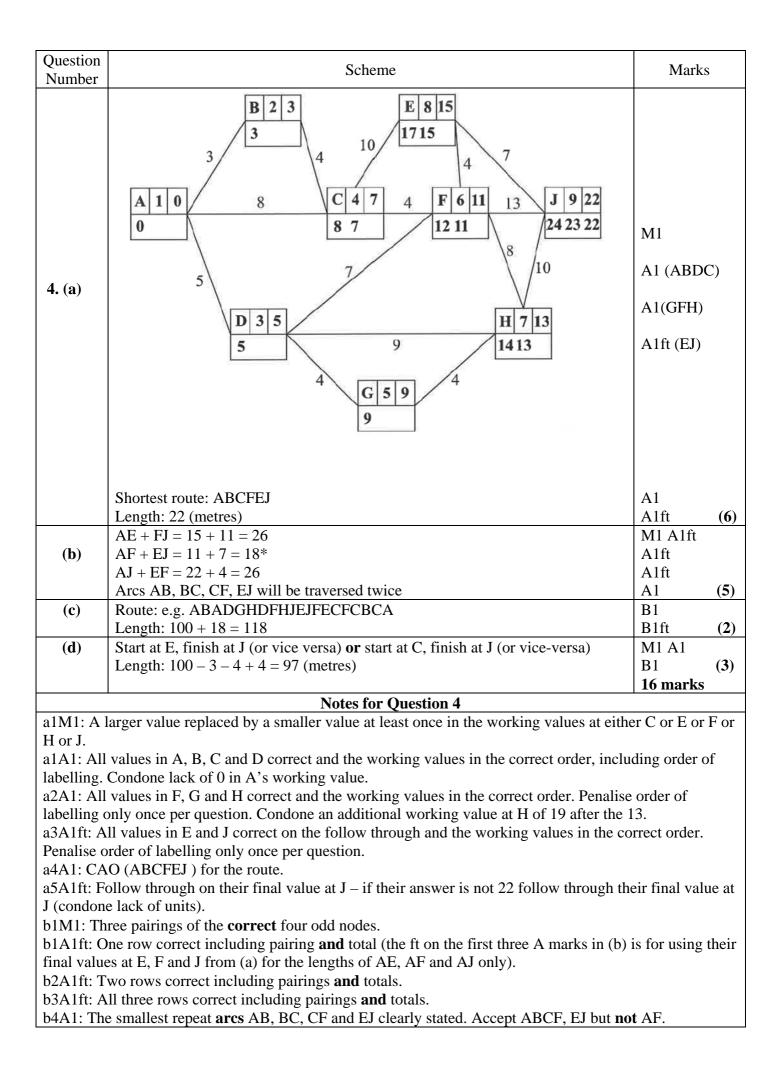
PEARSON EDEXCEL IAL MATHEMATICS


General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method
 (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.


- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

e.g. B can only do task 2 and F can only do task 6 therefore E will have no		
allocation as E can only do task 2 and 7 can only do task 0 therefore E with have no e.g. D has to do task 4 as task 4 can only be done by D therefore task 5 has to be done by A as task 5 can only be done by A and D which leaves task 3 with	B1	(1)
no worker as only A can do task 3		
C - 1 = A - 3	B1	
	B1	(2)
A = 5, B = 2, C = 1, D = 4, E = 6 (F unmatched)	BI	(2)
Alternating path $F - 6 = E - 2 = B - 5 = D - 4$ or $F - 6 = E - 2 = B - 5 = A - 3$	M1	
Change status $F = 6 - E = 2 - B = 5 - D = 4$ or $F = 6 - E = 2 - B = 5 - A = 3$	A1	
Complete matching $A = 3, B = 5, C = 1, D = 4, E = 2, F = 6$	A1 8 marks	(3)
Notes for Question 2		
1	rcs only).	
	C - 1 = A - 5 = D - 4 $A = 3, B = 2, C = 1, D = 5, E = 6 (F unmatched)$ $A = 5, B = 2, C = 1, D = 4, E = 6 (F unmatched)$ Alternating path $F - 6 = E - 2 = B - 5 = D - 4$ or $F - 6 = E - 2 = B - 5 = A - 3$ Change status $F = 6 - E = 2 - B = 5 - D = 4$ or $F = 6 - E = 2 - B = 5 - D = 4$ or $F = 6 - E = 2 - B = 5 - A = 3$ Complete matching $A = 3, B = 5, C = 1, D = 4, E = 2, F = 6$ Notes for Question 2 $AO - must be a completely correct statement.$ $AO (C - 1 = A - 3).$ $AO (C - 1 = A - 5 = D - 4).$ $AO (A = 3, B = 2, C = 1, D = 5, E = 6).$ $AO (A = 5, B = 2, C = 1, D = 4, E = 6).$ $a alternating path from F to either 3 or 4 (or vice-versa).$ $AO - a correct path including change status either stated (only accept 'change (of)). Chosen path clear.$	C-1 = A - 5 = D - 4B1 $A = 3, B = 2, C = 1, D = 5, E = 6$ (F unmatched)B1 $A = 5, B = 2, C = 1, D = 4, E = 6$ (F unmatched)B1Alternating path $F - 6 = E - 2 = B - 5 = D - 4$ M1or $F - 6 = E - 2 = B - 5 = A - 3$ M1Change status $F = 6 - E = 2 - B = 5 - D = 4$ A1or $F = 6 - E = 2 - B = 5 - D = 4$ A1complete matching $A = 3, B = 5, C = 1, D = 4, E = 2, F = 6$ A18marksNotes for Question 2AO - must be a completely correct statement.AO (C - 1 = A - 3).AO (C - 1 = A - 5 = D - 4).AO (A = 3, B = 2, C = 1, D = 5, E = 6).AO (A = 5, B = 2, C = 1, D = 4, E = 6).AO (A = 5, B = 2, C = 1, D = 4, E = 6).AO (A = 5, B = 2, C = 1, D = 4, E = 6).AO - a correct path including change status either stated (only accept 'change (of) status' or 'Colspan="2">A

Question Number	Scheme	Marks				
3. (a)	Bin 1: 1.1 0.7 0.9 <u>0.2</u> Bin 2: 1.9 0.4 0.5 Bin 3: <u>2.1</u> Bin 4: <u>2.3</u> Bin 5: 1.7	M1 <u>A1</u> A1 (3)				
(b) (i) (ii)	1.1 1.9 0.9 2.1 0.7 2.3 0.4 0.5 1.7 0.2 Comparisons: 9 Swaps: 7	M1 A1 B1 B1 (4)				
(c)	e.g. using middle right1.91.12.10.92.30.70.51.70.40.2pivot 0.71.91.12.10.92.31.70.70.50.40.2pivots 0.90.41.91.12.12.31.70.90.70.50.40.2pivot(s) 2.1 (0.5) (0.2)2.32.11.91.11.70.90.70.50.40.2pivot(s) (2.3)1.12.32.11.91.71.10.90.70.50.40.2pivot 1.72.32.11.91.71.10.90.70.50.40.2(sort complete)	M1 A1 A1ft A1 (4)				
(d)	Bin 1: 2.3 <u>0.7</u> Bin 2: 2.1 <u>0.9</u> Bin 3: 1.9 1.1 Bin 4: 1.7 0.5 0.4 0.2	M1 <u>A1</u> A1 (3) 14 marks				
here only. a1A1: First seven numbers placed correctly. a2A1: CSO – all correct. bi1M1: Bubble sort, end number in place correctly. SC for M1 only: 0.7 1.1 0.9 1.9 0.2 2.1 0.4 0.5 1.7 2.3 (ascending from left-hand end). 0.2 1.1 0.7 1.9 0.9 2.1 0.4 2.3 0.5 1.7 (ascending from right-hand end). 2.3 1.1 0.7 1.9 0.9 2.1 0.2 1.7 0.4 0.5 (descending from right-hand end). bi1A1: CAO – isw after one complete pass. bi1B1: Comparisons correct (9). bi2B1: Swaps correct (7). c1M1: Quick sort – pivots, p, selected and first pass gives >p, p, <p. 1="" choosing="" if="" iteration<br="" only="" per="" pivot="">M1 only. Using bubble sort in this part is M0. c1A1: First pass correct and next pivots chosen correctly/consistently for second pass. c2A1ft: Second and third passes correct (follow through from their first pass and choice of pivots) – next pivot(s) chosen correctly/consistently for fourth pass. c3A1: CSO – including choice of pivot for the fifth pass and then either a 'stop' statement or final re-listing or using each item as a pivot. d1M1: Must be using 'sorted' list in decreasing order (independent of (c)). First five numbers placed correctly and at least six numbers put in bins. First-fit increasing is M0.</p.>						
	st seven numbers placed correctly. O – all correct.					

											-
-	stion nber							Sc	heme		Marks
SC for our correction of the second s	SC for (d): If the 'sorted' list used in (d) has one 'error' from (c) (e.g. a missing number, an extra number or one number incorrectly placed) then M1 only can be awarded in (d) (for the first five numbers placed correctly). If there is more than one 'error' then M0. Allow full marks in (d) if a correct list is used in (d) even if the list is incorrect at the end of (c). Sorting list into ascending order in (c)										
	• If (c) car	arks in the lis)). If t ndida	n (c). st is no he list te say	ot reve t is rev	ersed versed the lis	in (c) l at the st nee	then 1 e start ds rev	mark a of (d) ersing	as a misread) but not in (g in (c) but d	reverses the list in (c) then the (so remove the last two A man c) then still treat this as a misr oesn't actually show the rever	rks earned in ead. If the
Mid	dle let	ft									
1.9 2.3 2.3	1.1 1.9 1.9	2.1 1.1 1.1	0.9 2.1 2.1	2.3 0.9 0.9	0.7 0.7 1.7	0.5 0.5 <u>0.7</u>	1.7 1.7 0.5	0.4 0.4 0.4	0.2 0.2 0.2	Pivot 2.3 Pivot 0.7 Pivot 2.1 0.4	M1 A1
$ \frac{\underline{2.3}}{\underline{2.3}} 2.3 $	$\frac{2.1}{2.1}$ $\frac{2.1}{2.1}$	1.9 1.9 1.9	1.1 1.7 1.7	0.9 <u>1.1</u> <u>1.1</u>	1.7 0.9 0.9	<u>0.7</u> <u>0.7</u> <u>0.7</u>	0.5 0.5 0.5		0.2 0.2 0.2	Pivot 1.1 (0.5) (0.2) Pivot 1.9 (0.9) (sort complete)	A1ft A1
Asco	ending	g orde	er (mio	ddle ri	ight)						
1.9 0.5 0.2 0.2 0.2 0.2	$ \begin{array}{r} 1.1 \\ 0.4 \\ \underline{0.4} \\ 0.4 \\ \underline{0.4} \\ 0.4 \\ 0.4 \\ \end{array} $	2.1 0.2 0.5 0.5 0.5 0.5	$\begin{array}{c} 0.9 \\ \underline{0.7} \\ \underline{0.7} \\ \underline{0.7} \\ \underline{0.7} \\ \underline{0.7} \\ \underline{0.7} \end{array}$	2.3 1.9 <u>0.9</u> <u>0.9</u> <u>0.9</u> <u>0.9</u> <u>0.9</u>	0.7 1.1 1.9 1.9 <u>1.1</u> <u>1.1</u>	$0.5 \\ 2.1 \\ 1.1 \\ 1.1 \\ 1.9 \\ 1.7 $	1.7 0.9 2.1 1.7 1.9	$\begin{array}{c} 0.4 \\ 2.3 \\ 2.3 \\ \underline{2.1} \\ \underline{2.1} \\ \underline{2.1} \end{array}$	0.2 1.7 1.7 2.3 2.3 2.3	Pivot 0.7 Pivot 0.4 0.9 Pivot (0.2) (0.5) 2.1 Pivot 1.1 (2.3) Pivot 1.7 sort complete	M1 A1 A1ft A1
Asce	Ascending order (middle left)										
1.9 1.9 0.5 0.2 0.2 0.2	$ \begin{array}{c} 1.1 \\ 1.1 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ \end{array} $	2.1 2.1 0.2 0.5 0.5 0.5	0.9 0.9 <u>0.7</u> <u>0.7</u> <u>0.7</u> <u>0.7</u>	2.3 0.7 1.9 1.9 0.9 0.9	$0.7 \\ 0.5 \\ 1.1 $	$0.5 \\ 1.7 \\ 2.1 \\ 0.9 \\ 1.9 \\ 1.7$	1.7 0.4 0.9 1.7 1.7 <u>1.9</u>	$0.4 \\ 0.2 \\ 1.7 \\ \underline{2.1} \\ \underline{2.1} \\ \underline{2.1} \\ \underline{2.1}$	$\begin{array}{c} 0.2 \\ \underline{2.3} \end{array}$	Pivot 2.3 Pivot 0.7 Pivot 0.4 2.1 Pivot (0.2) (0.5) 1.1 Pivot (0.9) 1.9 sort complete	M1 A1 A1ft A1

Question Number	Scheme	Marks			
c1B1: Any correct route (checks: 20 nodes, starting and finishing at A, pairings AB, BC, CF, EJ appear					

twice in the route and that A, C and F appear three times, B, D, E, H and J appear twice and G appears once).

c2B1ft: Correct answer of 118 or 100 + their least out of a choice of at least **two** totals given in (b). d1M1: Any consideration/mention of all the odd nodes (C, E, F and J) or consideration/mention of all the odd pairings (CE, CF, CJ, EF, EJ, FJ) or consideration/mention of arcs EF and CF (and no others) having least weight or EF and CF (and no others) having a weight of 4 or listing one correct starting and finishing point (must be clear).

d1A1: Both combinations of starting and finishing points correct (E and J + C and J) and no others. d1B1: CAO (97)

Question Number	Scheme	Mark	S
5. (a)	$\begin{array}{c} C \\ A \\ B \\ B \\ E \\ I \\ \end{array}$	M1 A1 A1 A1 A1 A1	(5)
(b)	Dummies are needed to show either – dependency where subsequent activities do not all depend on the same preceding activities – that an activity can be uniquely represented in terms of its end events	B1 B1 7 marks	(2)

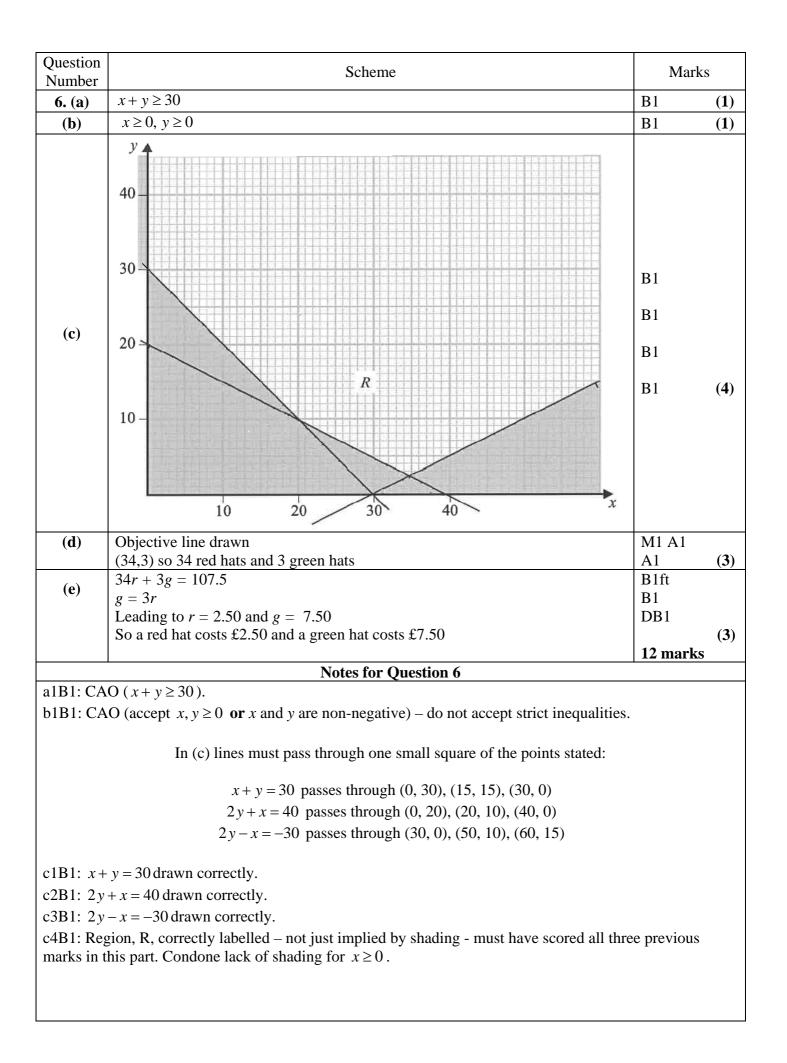
In (a) condone lack of, or incorrect, numbered events throughout – also 'dealt with correctly' means that the activity starts from the correct event but may not finish at the correct event. **Activity on node is M0**.

Do not penalise the same error twice with the first three A marks, for example, if activity C is not labelled (but the arc is present) then this will lose the first A mark and the final (CSO) A mark – they can still earn the second A mark on the bod.

a1M1: Eight activities (labelled on arc), one start and at least one dummy placed.

a1A1: Activities A, B, 1st dummy (+ arrow) and C, D and E dealt with correctly.

a2A1: 2nd dummy (+ arrow) and F, G and K dealt with correctly.


a3A1: Activities H, I, 3rd dummy (+ arrow) and J dealt with correctly.

a4A1: CSO – **all** arrows present **and** correctly placed with one finish.

Penalise lack of, or incorrect, arrows on the dummies only once with the first three A marks (on the first occurrence).

b1B1: Dependency + some explanation of what this means, bod – allow a correct example using any nodes/letters.

b2B1: Uniqueness – please note that, for example, 'so that activities can be defined uniquely' is not sufficient to earn this mark. There must be some mention of describing activities either in terms of the event **at each end** or in terms of an activities **events**. However, give bod on statements that imply that an activity begins and ends at the same event.

Question Number	Scheme	Marks
d1M1: Dra	wing the correct objective line or its reciprocal $\left(m = -3 \text{ or } -\frac{1}{3}\right)$. Line must be co	orrect to within
	square if extended from axis to axis.	
d1A1: Cor	rect objective line $\left(m = -\frac{1}{3}\right)$ – condone lack of labelling of the objective line.	
	rect point identified – accept as a coordinate (34, 3). 'correct' equation involving their optimal point from (d) (accept any values even).	if non-integer)
	O on the relationship between the costs of green hats and red hats $(g = 3r)$ – this m g. $34r + 3(3r) = 107.5$ would score the first two marks in this part.	nark may be
e3DB1: CA	AO – this mark is dependent on having the correct optimal point $(34, 3)$ in (d).	

Question Number	Scheme	Mark	S			
7. (a)	$ \begin{array}{l} x = 12 \\ y = 3 \end{array} $	B1 B1	(2)			
(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1	(3)			
(c)	Lower bound = $\frac{99}{37}$ = 2.675 so 3 workers	B1	(1)			
(d)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 A1 A1 A1	(4)			
(e)	Lower bound is 5 workers – e.g. activities H, I, J, K and L together with 27 < time < 28	M1 A1	(2)			
a1B1: Cor	Notes for Question 7 rrect value (12) for x.					
	rrect value (3) for y.					
b1A1: An b2A1: CA	 l (but one) boxes complete and any three values correct. y five values correct. O (all seven values correct). O – no incorrect working – if 3 workers with no working then give on the bod. 					
d1M1: At d1A1: The d2A1: All	least nine activities including at least five floats. Scheduling diagram scores M e correct critical activities (B, F, H and M) dealt with correctly. correct non-critical activities present with floats with five non-critical activities of nine non-critical activities correct.					

Question Number	Scheme	Marks			
e1M1: A statement with the correct number of workers (5) and the correct activities (H, I, J, K and L) with some mention of time.					
e1A1: A completely correct statement with details of both time and activities. Candidates only need to give a time within the correct interval. Please note the strict inequalities for the time interval. Allow for example,					

'on day 28' as equivalent to 27 < time < 28.